# Campus du libre, 21 Octobre 2023

#### Marc BUFFAT

Université Claude Bernard Iyon 1

21st Oct. 2023



#### Keywords

1 Retour d'expériences sur un environnement de cours basé sur JupyterHub, Nbgrader et Flask dans l'enseignement supérieur en sciences

version html sur https://perso.univ-lyon1.fr/marc.buffat



# Campus du libre, Octobre 2023

Marc BUFFAT département mécanique, Université Lyon 1



# 2 Plan de l'exposé

- 1 Contexte personnel
- 2 Contexte professionnel
- 3 Choix de la solution
- 4 Infrastructure mise en place



- 5 Cas d'usage
- 6 Jupyter-book: livre de cours interactif
- 7 Bilan
- 8 Questions?

# 2.1 Contexte personnel

| Tombé jeune dans la marmite du logiciel libre | DIY | Linux |
|-----------------------------------------------|-----|-------|
|                                               |     |       |







**Stallmanoramix** *guy.pastre.org*)

(crédit Tavernier 6809 128ko en 1985

Noyau linux sur disquettes  $3\ 1/2$  dès 1995

# 2.2 Contexte professionnel

| Besoins                                            | Méthode                                            |
|----------------------------------------------------|----------------------------------------------------|
| Enseignant en mécanique, modélisation numérique,   | 1. Adaptation des outils à ma pédagogie et non     |
| calcul scientifique                                | l'inverse                                          |
| - Approche KISS (Phylosophie d'Unix)               |                                                    |
| - Simple is better than complex                    |                                                    |
| Besoin d'outils numériques adaptés à mes enseigne- | 2. Développement basé sur les besoins péda-        |
| ments et mes étudiants                             | gogiques                                           |
| Outils comme Matlab et Maple trop contraignants    | 3. Utilisation de <b>notebook Jupyter</b> des 2015 |

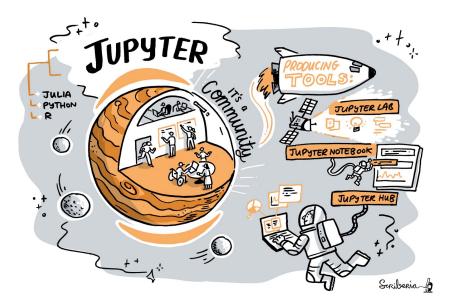
• Utilisation de Python dans ma recherche (HPC) dès 2010| Problématique environnementale | 4. Solution mutualisée éco-éfficiente

## 2.3 Choix de la solution

Logiciels libres que l'on peut étendre, adapter aux besoins et faire communiquer

| Python                      | Jupyter | Flask | Debian linux    | GitLab |  |
|-----------------------------|---------|-------|-----------------|--------|--|
| <b>p</b> ython <sup>™</sup> | Jupyter | Flask | debian  Osatina | GitLab |  |

• Serveurs debian virtualisés avec un environnement virtuel python avec jupyterhub




- Gestion de cours par année , par portail et par UE
- Mise a jour automatique avec GitLab

#### Jupyter book sur le système de cours Jupyter/nbgrader/Flask

# Basé sur l' EcoSystème Jupyter (pour l'éducation)

Ensemble d'outils open source pour l'informatique interactive et exploratoire, et une plate-forme interactive pour créer des récits informatiques



Large communauté internationale avec une convention internationale annuelle JupyerCon (Paris mai 2023)

#### 2.4 Infrastructure mise en place

Serveurs virtualisées Debian + JupyterHub au dpt méca depuis 2015



Dans le cadre du projet AMI INCLUDE, déploiement à Lyon 1 depuis 2022

- un IR Thomas DUPRIEZ (déploiement/adaptation)
- une IE pédagogique Sarah Pollet (formation)
- en cours: gestion openstack des VM (un alternant Sylvère Kanapa)

Infrastructure actuelle: gestion des VM avec KVM

- 2x serveurs AMD 128 coeurs 512Go RAM (conso / serveur  $\approx 300W$ )
- 2x serveurs AMD 96 coeurs 768 Go RAM, 2 GPU AMD A40



#### 2.4.1 Bilan d'utilisation

site https://jupyter.univ-lyon1.fr

• un serveur par année de formation

(L1 ~ 1500 étudiants, L2 ~ 470 étudiants, L3 ~280 étudiants, M1 ~ 230 étudiants, M2 170 étudiants)

- 7 portails (Méca, Physique, Chimie, Maths, Génie-électrique, Science de la terre, Info.)+ 1 transversal
   (→ ~3000 étudiants)
- 31 cours (UE) ouverts avec ~ 90 enseignants dans les équipes pédagogiques
- à terme 1ere et 2nd année INSA de Lyon (~ 900 étudiants)

exemple: serveur M2 jupyterM2 cours MGC2367MG1

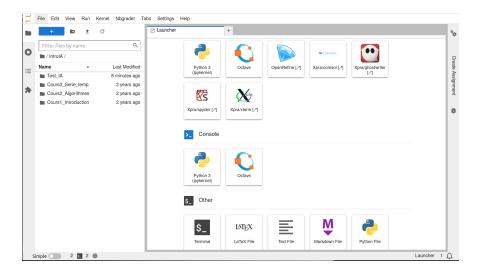
#### 2.5 Cas d'usage

#### 2.5.1 Objectifs pédagogiques

- 1. Apprentissage d'une méthode (et pas d'un langage)
  - en privilégiant une approche algorithmique
  - et l'utilisant approche scientifique (rigueur, validation)
- 2. Maîtrise de l'utilisation de l'informatique scientifique
  - pour du traitement de données
  - pour comprendre la modélisation et la simulation
  - pour l'analyse des données d'expériences ou de simulation
- 3. Apprentissage pas forcement axé sur le développement de code

## 2.5.2 Approche pédagogique

L'approche pédagogique "learning by doing"

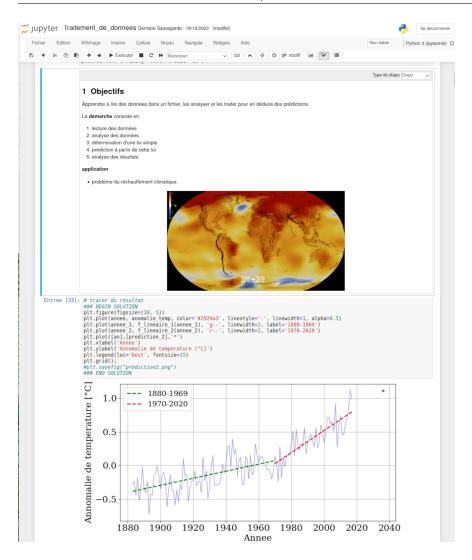

What comes first, "using" or "understanding"? The natural mode of learning is to first use, leading slowly to understanding. (Seymour Papert)

## 2.5.3 Interfaces WEB

Interface Notebook classique ou JupyterLab (avec XPRA) + gestion GPU

example: serveur M2 jupyterM2



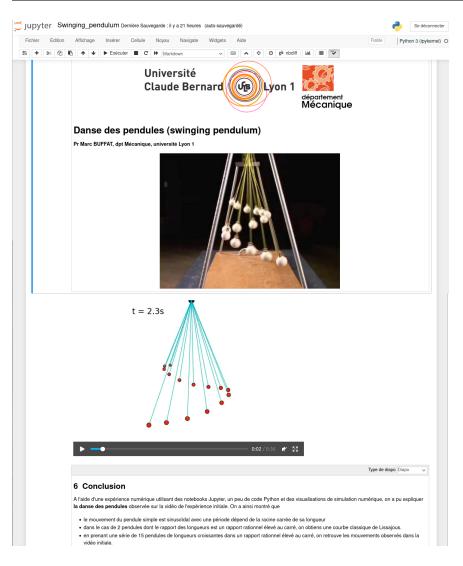



# 2.5.4 Notebooks pour des TPs numériques

traitement et analyse de données en L2 sur le réchauffement climatique

- Notebook du TP de L2
- TP sur le serveur L2 cours MGC2028L



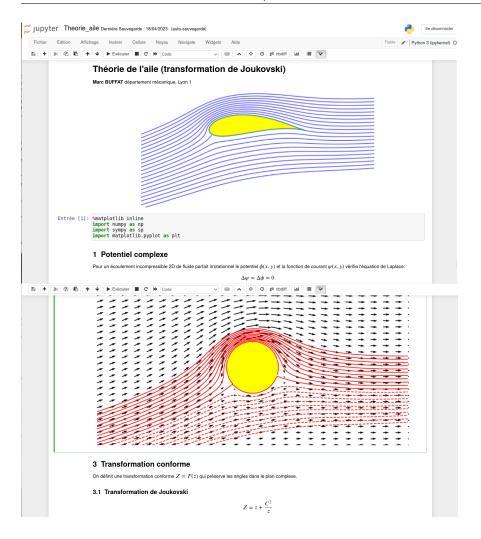



## 2.5.5 Notebook d'illustrations interactives:

## danse des pendules

Notebook explicatif + Vidéo



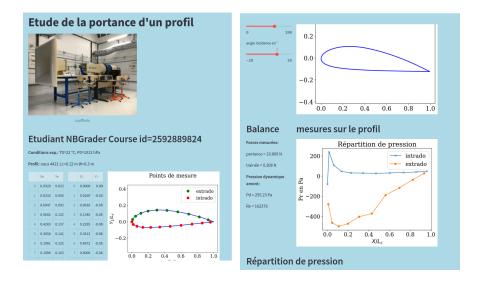



## 2.5.6 Notebook de cours

Notebook sur la théorie de l'aile et la transformation de Kutta Joukovski

• cours MGC1061M sur le serveur M1

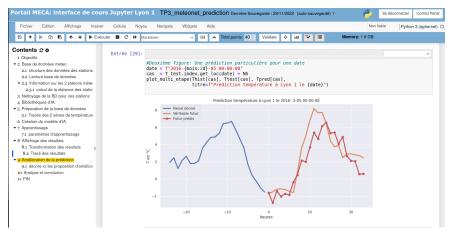





# 2.5.7 Notebook pour des TP virtuels

TP en autonomie utilisant les notebooks + **streamlit** 

- TP virtuel de mesures de portance sur une aile d'avion
- cours MGC3062L sur le serveur L3






## 2.5.8 Notebook sur le machine learning (prédiction météo)

- utilisation d'une très grosse BD Météo-France
- base de donnée brute nécessitant du nettoyage
- ressource de calcul importante pour la phase d'apprentissage
- environnement virtuel Python pour du machine learning (GPU)
  - Pansa, Seaborn, scikit-leran, tensor-flow, Keras, Pytorch

#### cours MGC2367M sur le serveur M2



attention ce modèle d'IA est non explicatif et donc limité

#### 2.6 Jupyter-book: livre de cours interactif

valorisation des ressources pédagogiques avec l'outil jupyter book

- notebooks ipython
- fichiers en markdown (version myst) avec du code LaTeX
- utilisation de Sphinx , bibtex , ...





exemples de livre sur https://perso.univ-lyon1.fr/marc.buffat

#### 2.7 Bilan

- Bilan très positif
  - très forte communauté autour de Jupyter dans le monde de l'enseignement (essentiellement anglophone)
- Mais **ATTENTION** ce n'est qu'un outil au service de la pédagogie
  - importance du papier et du crayon dans l'apprentissage
- Quelques difficultés
  - ques pbles de compatibilité entre les très nombreuses bibliothèques Python (gestion avec PIP)
  - solution : personnalisation des VM avec Openstack
  - nécessite des moyens humains, en particulier pour la formation

#### 2.8 Questions?



## 2.8.1 Bibliographie

- Jupyter book sur le système de cours Jupyter/nbgrader/Flask
- Teaching and Learning with Jupyter by Lorena A. Barba et al.
- site professionel https://perso.univ-lyon1.fr/marc.buffat



# References